Operons Form Because of Co-regulation and Not by Horizontal Gene Transfer

M.N. Price^{1,4}, K.H. Huang^{1,4}, A.P. Arkin^{1,2,3,4}, E.J. Alm^{1,4}

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, ²Howard Hughes Medical Institute, Berkeley, CA, USA, ³Department of Bioengineering, UC Berkeley, USA ⁴Virtual Institute for Microbial Stress and Survival

Abstract

Why Are There Operons?

- Co-regulation selects for new operons Operons have more upstream regulatory information Operons are not selfish
- Operons form without horizontal gene transfer (HGT) Non-HGT genes are mostly in operons Non-HGT and native genes form new operons
- New operons are not functionally coherent
- HGT does help maintain operons

Associated with transfer of existing operons, not with the creation of new operons Insertion of new genes often creates operons

Theories of Operon Evolution

- · Co-regulation
 - Clustering genes under the same promoter provides a selective advantage to the organism
- Selfish operons
 - Clustering of genes into operons makes them more likely to propagate by HGT

Others: Thermoadaptation, Coevolution

Operons Have More

Phylogenetic footprints in E. coli (from McCue et al. 2002)

Only the first gene in predicted operons Only genes with footprints

Aging Operons (pairs of genes)

Aging Genes

Similar to Aging Operons

- · Native to the proteobacteria
 - Homologs in every clade
- Non-HGT (special subset of Native)
 - Single-copy ubiquitous COGs
 - Gene tree agrees with species tree (Lerat et al.2003)
- ORFan
 - No homologs outside clade

Using COG function codes, and only pairs where both genes

Inventing Operons without HGT

Non-HGT Genes Are More Likely to Be in Operons

New Operons of Non-HGT Genes

Many Operons Are Imported

- Imported operons are 2x enriched in HGT genes
- · Gene's age usually agrees with operon's age (simple transfer)

Operons Sometimes Form When ORFans Insert

Highly Expressed Genes

Have Longer Spacings

Alternative Transcripts and Widely Spaced Operons Are Similar

Life Cycle of an Operon

Birth

- Gene pairs are merged into new operons
- · By rearrangement or deletion of intervening genes
- Ancient (and non-HGT) genes can form operons
- Useful operons are selected for advantageous
- Some new operons allow ORFans to be expressed?

• Death

- Gene order is shuffled extensively across
- Operons involving highly conserved or essential genes resist disruption
- Genes in operons tend to be more conserved & more
- · Many operons are imported from distant lineages
- · Operons are a useful unit of HGT

* Unique to Enterobacteria